构成三角形的条件构成三角形需要什么条件

三角形的组成条件为:

1、组成三角形的三条边中,任意一边大于其他两边之差,任意一边小于其他两边之和

2、三角形由同一平面内且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形。

构成三角形的条件

三条线段构成三角形的条件:

三条边必须满足:

1、三角形两边之和大于第三边,两边之差小于第三边。即三角形两边之和大于第三边中的两边是指两条较小的边,两边之差

小于第三边的两边是指两条较大的边。

2、斜边的长度大于其他的两条。

三条线段组成三角形的条件

三条边必须满足: 三角形两边之和大于第三边,两边之差小于第三边。

基本定义:

由同一平面内,且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形叫做三角形(triangle),符号为△。三角形是几何图案的基本图形。

中线:

连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。

高:

从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的 高(altitude)。

角平分线:

三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的 角平分线(bisector of angle)。

中位线:

三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。切记,中位线没有逆定理。

基本性质:

一般性质:

1 在平面上三角形的 内角和等于180°(内角和定理);

2 在平面上三角形的外角和等于360° (外角和定理);

3 在平面上三角形的 外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4 一个三角形的三个内角中最少有两个 锐角。

5 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 三角形任意两边之和大于第三边,任意两边之差小于第三边。

7 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8直角三角形的两条直角边的平方和等于斜边的平方( 勾股定理)。

*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。

9直角三角形斜边的中线等于斜边的一半。

10三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

11三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

12 等底同高的三角形面积相等。

13 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

14三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

15等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

能组成三角形的条件

三角形的组成条件为:组成三角形的三条边中,任意一边大于其他两边之差,任意一边小于其他两边之和。三角形由同一平面内且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形。

三角形性质:

1、勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

2、勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

3、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

4、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

5、三角形任意两边之和大于第三边,任意两边之差小于第三边。

6、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

7、一个三角形的三个内角中最少有两个锐角。

8、在平面上三角形的外角等于与其不相邻的两个内角之和。

9、内角和定理:在平面上三角形的内角和等于180°。

10、外角和定理:在平面上三角形的外角和等于360°。

构成三角形的条件是什么?

可以根据数学公式进行判断。

一、数学定理。要构成三角形,必须要任意两边和大于第三边。进行判断的时候,其实只需要判断最小的两边和大于最长一边即可。

二、算法设计。根据数学定理,在获取到三个边长后,可以有多种方法进行判断。

判断三条线段能否组成三角形的依据是三角形三边关系的定理:“三角形任何两边的和大于第三边”和它的推论:“三角形任何两边的差小于第三边”。即若三角形的三边是a,b,c,则有:

a

b

c

以及

a>c-b(且a>b-c),④

b>a-c(且b>c-a),⑤

c>a-b(且c>b-a)。⑥

在具体应用时,一般要在给出的三条线段中,找出一条最长的线段与另两条线段的和进行比较,如果适合定理,另外5个不等式就自然成立。

扩展资料:

性质

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。

7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。