一、卡方分布的意义是什么?求简单通俗

就是检验抽样的样本是否符合指定的概率分布

若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其卡方分布分布规律称为χ2(n)分布(chisquare distribution),其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。

二、卡方检验p值意义

卡方值仅仅只是一个中间过程,通过卡方值计算出p值,p值才是我们最重要需要的。p小于0.05意味着存在显著差异。

三、spss里面卡方检验的结果怎么解释啊

chi-square就是卡方的意思,因此你的结果的卡方值等于9.910;df指的是自由度;asymp.sig就是我们常说的p值,因此p=0.007;一般来说,只要p值小于0.05就认为结果有显著性差异;此外,你还应该注意表格下面的注解:

a.

cells

(.0%)

have

expected

count

less

than

5.

the

minimum

expected

count

is

66.7.

这句话很重要,关系到你的结果是否可靠!asymp.sig的结果,理论频数小于5的cells(格子)比例不能超过20%,否则结果不可靠。按照这个标准,你的数据没有任何一个格子的理论频数小于5(最小值是66.7),因此你的结果是可靠的。

如果理论频数小于5的cells(格子)比例超过20%,你就不能使用asymp.sig的结果,此时应该在spss卡方检验中选择使用exact

test(确切概率法),以exact

test的结果为准(软件也同时显示asymp.sig的结果)。

四、卡方值大小代表什么意义?是不是值越大P值越小呢?(ad-bc)2n/(a+b)(c+d)(a+c)(b+d)这样可能出负值吗?

卡方分布是n个相互独立的服从标准正态分布的随机变量的平方和的分布。由此可知,卡方是没有负数的,卡方值越大P值就越小,越显著。

(ad-bc)2n/(a+b)(c+d)(a+c)(b+d)这个公式里面abcd均是计数数据,均大于等于0,而(ad-bc)2由于有平方,所以也不会为负数,所以这个公式也没有负值。

五、卡方检验有哪些指标?卡方值怎么计算?

一、研究场景

卡方检验是一种假设检验的方法,它属于非参数检验的范畴,主要是用于分析定类数据与定类数据之间的关系情况。例如:分析性别与患病之间是否存在差异、性别与是吸烟之间是否存在差异性等。

二、SPSSAU操作

SPSSAU左侧仪表盘“实验/医学研究” → “卡方检验”;

三、卡方值的意义

卡方值表示观察值与理论值之间的偏离程度。计算这种偏离程度的基本思路如下。

设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。

显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数和期望频数的差别,则有一定的不足之处。因为残差有正有负,相加后会使彼此抵消,总和仍为0,为此可以将残差平方后求和

另一方面,残差大小是一个相对的概念,相对于期望频数是10时,期望频数为20的残差非常大,但相对于期望频数为1000是20就很小,考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察颍数与期望烦数的差别。

四、SPSSAU结果与指标解读

1.卡方检验分析结果

其中A代表某个类别的观察频数,E代表基于H0计算出的期望频数,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。当n比较大时,χ2统计量近似服从k-1个自由度的卡方分布。

2.卡方检验统计量过程值

3. 深入分析-效应量指标

4.多重比较结果

(1)第1次多重比较

(2)第2次多重比较

(3)第3次多重比较

5. 趋势卡方检验

五、其他说明

1.卡方检验事后多重比较是什么意思?

医学研究模块里面的卡方检验方法时,SPSSAU默认提供多重比较功能,且SPSSAU仅针对第1个Y进行,可通过更换Y的位置实现其它分析项的多重比较,X或Y的选项个数大于10时不进行多重比较。

多重比较时,SPSSAU默认提供Pearson卡方检验值,多重比较时,检验次数增多会增加一类错误的概率,建议使用校正显著性水平(Bonferroni校正),比如如果显著性水平为0.05,并且两两比较次数为3次,那么Bonferroni校正显著性水平为0.05/3次=0.0167,即p值需要与0.0167进行对比,而不是0.05。

2. 卡方检验出现多个卡方值和p值的原理?

如果卡方检验出现多个卡方值和p值,其原理和详细操作步骤说明如下, SPSSAU多个卡方值和P值处理

总结

如果研究中卡方检验表格出现多个卡方值和 p值,建议先理解表格里面是进行了卡方检验,还是卡方拟合优度检验,然后按 SPSSAU多个卡方值和P值处理 说明操作进行,最后在EXCEL表格中进行汇总整理表格即可。以上就是卡方分析的指标解读。卡方检验无论是在问卷调研或是医学实验中,都是非常实用高效的方法,没有展开说明的部分建议大家查阅SPSSAU帮助手册进行学习。

更多干货请前往 SPSSAU 官网查看。

六、卡方检验中卡方值代表什么,意义上什么

卡方值是非参数检验中的一个统计量,主要用于非参数统计分析中。它的作用是检验数据的相关性。如果卡方值的显著性(即SIG.)小于0.05,说明两个变量是显著相关的。

卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。

x2检验亦称卡方检验。统计学中假设检验的方式之一。x是一个希腊字母,x2可读音为卡方,所以译为卡方检验。卡方检验主要用于定类或定序变量的假设检验,在社会统计中应用非常广泛。

卡方检验的步骤一般为:

(1)建立假设,确定显著水平a与自由度df、查x2值表得到否定域的临界值;

(2)由样本资料计算x2值;

(3)将计算所得的x2值与临界x2值(负值都取绝对值)作比较,若计算值大于临界值,则否定Ⅱ0;反之,则承认Ⅱ0。

计算卡方值的公式一般可表示为:x2=∑[(fo—fc)2/fc]

式中:fo表示实际所得的次数,fc表示由假设而定的理论次数,∑为加总符号。

x2检验对于定类与定类或定类与定序变量之间的相关检验应用较多。